




# Technische Informationen





# Temperaturbereich

| T <sub>min</sub> | -30 °C   | Betriebstemperatur min. |
|------------------|----------|-------------------------|
| T <sub>max</sub> | 120 °C   | Betriebstemperatur max. |
|                  | 0,238 kg | Gewicht                 |

### Hauptabmessungen und Leistungsdaten

| d               | 30 mm        | Bohrungsdurchmesser             |
|-----------------|--------------|---------------------------------|
| D               | 62 mm        | Außendurchmesser                |
| В               | 16 mm        | Breite des Innenringes          |
| С               | 14 mm        | Breite des Außenringes          |
| Т               | 17,25 mm     | Breite des Lagers               |
| C <sub>r</sub>  | 52.000 N     | Dynamische Tragzahl, radial     |
| C <sub>0r</sub> | 48.500 N     | Statische Tragzahl, radial      |
| C <sub>ur</sub> | 7.400 N      | Ermüdungsgrenzbelastung, radial |
| n <sub>G</sub>  | 13.700 1/min | Grenzdrehzahl                   |
| n <sub>ϑr</sub> | 7.400 1/min  | Thermische Bezugsdrehzahl       |
|                 |              |                                 |

## Abmessungen

| r <sub>1, 2 min</sub> | 1 mm    | Minimaler Kantenabstand an der breiten  |
|-----------------------|---------|-----------------------------------------|
|                       |         | Stirnseite des Innenringes              |
| r <sub>3, 4 min</sub> | 1 mm    | Minimaler Kantenabstand an der breiten  |
|                       |         | Stirnseite des Außenringes              |
| а                     | 14 mm   | Abstand Druckkegelspitze                |
| d <sub>1</sub>        | 46,2 mm | Führungsborddurchmesser des Innenringes |

16.06.2021, 23:15:58 (GMT+08:00) SCHAEFFLER

# Anschlußmaße

| d <sub>a max</sub> | 37 mm | Maximaler Durchmesser der Wellenschulter  |
|--------------------|-------|-------------------------------------------|
| d <sub>b min</sub> | 36 mm | Minimaler Durchmesser der Wellenschulter  |
| D <sub>a min</sub> | 53 mm | Minimaler Durchmesser der Gehäuseschulter |
| D <sub>a max</sub> | 56 mm | Maximaler Durchmesser der Gehäuseschulter |
| D <sub>b min</sub> | 57 mm | Minimaler Durchmesser der Gehäuseschulter |
| C <sub>a min</sub> | 2 mm  | Minimaler axialer Freiraum                |
| C <sub>b min</sub> | 3 mm  | Minimaler axialer Freiraum                |
| r <sub>a max</sub> | 1 mm  | Maximaler Hohlkehlradius an der Welle     |
| r <sub>b max</sub> | 1 mm  | Maximaler Hohlkehlradius am Gehäuse       |

# Berechnungsfaktoren

|                | T3DB030 | Vergleichsbezeichnung nach ISO 10317 und      |
|----------------|---------|-----------------------------------------------|
|                |         | ISO 355                                       |
| е              | 0,37    | Grenzwert für Fa/Fr für die Anwendbarkeit der |
|                |         | versch. Werte der Faktoren X und Y            |
| Υ              | 1,6     | Dynamischer Axiallastfaktor                   |
| Υ <sub>0</sub> | 0,88    | Statischer Axiallastfaktor                    |