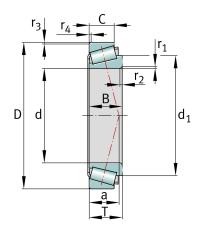
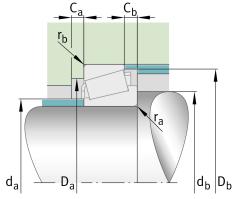
16.06.2021, 23:39:28 (GMT+08:00) SCHAEFFLER

★ 33016


Kegelrollenlager


Schaeffler Material-Nummer: 0167133620000

Vorzugsprodukt

Kegelrollenlager 330, Hauptabmessungen nach DIN ISO 355 / DIN 720, zerlegbar, angestellt oder paarweise

Technische Informationen

Temperaturbereich

T _{min}	-30 °C	Betriebstemperatur min.
T _{max}	120 °C	Betriebstemperatur max.
	1,625 kg	Gewicht

Hauptabmessungen und Leistungsdaten

d	80 mm	Bohrungsdurchmesser
D	125 mm	Außendurchmesser
В	36 mm	Breite des Innenringes
С	29,5 mm	Breite des Außenringes
Т	36 mm	Breite des Lagers
C _r	175.000 N	Dynamische Tragzahl, radial
C _{0r}	290.000 N	Statische Tragzahl, radial
C ur	38.000 N	Ermüdungsgrenzbelastung, radial
n _G	5.400 1/min	Grenzdrehzahl
n _{ϑr}	3.550 1/min	Thermische Bezugsdrehzahl

Abmessungen

r _{1, 2 min}	1,5 mm	Minimaler Kantenabstand an der breiten
		Stirnseite des Innenringes
r _{3, 4 min}	1,5 mm	Minimaler Kantenabstand an der breiten
		Stirnseite des Außenringes
а	26 mm	Abstand Druckkegelspitze
d ₁	102,6 mm	Führungsborddurchmesser des Innenringes

16.06.2021, 23:39:28 (GMT+08:00) SCHAEFFLER

Anschlußmaße

d _{a max}	90 mm	Maximaler Durchmesser der Wellenschulter
d _{b min}	87 mm	Minimaler Durchmesser der Wellenschulter
D _{a min}	112 mm	Minimaler Durchmesser der Gehäuseschulter
D _{a max}	117 mm	Maximaler Durchmesser der Gehäuseschulter
D _{b min}	119 mm	Minimaler Durchmesser der Gehäuseschulter
C _{a min}	6 mm	Minimaler axialer Freiraum
C _{b min}	6,5 mm	Minimaler axialer Freiraum
r _{a max}	1,5 mm	Maximaler Hohlkehlradius an der Welle
r _{b max}	1,5 mm	Maximaler Hohlkehlradius am Gehäuse
Berechnungsfaktoren		
	T2CE080	Vergleichsbezeichnung nach ISO 10317 und

	T2CE080	Vergleichsbezeichnung nach ISO 10317 und
		ISO 355
е	0,28	Grenzwert für Fa/Fr für die Anwendbarkeit der
		versch. Werte der Faktoren X und Y
Υ	2,16	Dynamischer Axiallastfaktor
Υ ₀	1,19	Statischer Axiallastfaktor